Rainfall Estimation with Polarimetric Radar Measurements for the storm on June 19, 2003 in Denver

Zhiyong (Ellie) Meng and Zhibo Zhang

December 2004
Outline

- Motivation
- Background
- June 19, 2003 storm in Denver
- Data and Methodology
- Results & Discussion
- Conclusions
Motivation

- To estimate rainfall rate using different estimators
- To understand the differences between estimators
- To compare the calculations with the observations
Background

- Polarimetric Radar Observables
 - Radar reflectivity
 \[z_{hh} = \int_0^\infty D^6 N(D)dD \]
 - Differential reflectivity
 \[Z_{DR} = 10\log\left(\frac{z_{hh}}{z_{vv}}\right) \]
 - Specific differential phase
 \[K_{dp} = \frac{180\lambda}{\pi} \int_0^\infty \text{Re}[f_h(D) - f_v(D)]N(D)dD \]

Rain rate estimators

- \[R = aZ^b \]
- \[R = c10^{0.1aZ_h}10^{0.1bZ_{dr}} \]
- \[R = cK_{dp}^b \]
- \[R = cK_{dp}^a 10^{0.1bZ_{dr}} \]

\[R(Z-K_{dp}) \]
Case: June 19, 2003 storm in Denver

- **When**
 - 21:27~22:28 UTC
- **Where**
- **Rain Obs (gauge 1800)**

1h rain at 22:30 on June 19 2003 in Denver area
Radar Data

- **CSU-Chill Radar**
 - Dual-polarized
 - Frequency 2.725GHz
 (wavelength ~10cm)
 - Location (40.446N 104.637W)

Rain Gauge location
(39.756N 104.831W)
Methodology

Rain Rate Estimators

- **R(Z)**
 \[R = 0.0365 \times 10^{(0.1 \times 0.625 \times Z)} \]

- **R(Z-Zdr)**
 \[R = 0.0067 \times 10^{0.1 \times 0.93 \times Z} 10^{0.1 \times (-3.43) \times Z_{dr}} \]

- **R(Kdp)**
 \[R = 50.7 \times K_{dp}^{0.85} \]

- **R(Zdr-Kdp)**
 \[R = 90.8 \times K_{dp}^{0.93} 10^{0.1 \times (-1.69) \times Z_{dr}} \]

- **R(Z-Kdp)**
 \[R = \begin{cases} 0.0365 \times 10^{(0.1 \times 0.625 \times Z_{h})} & K_{dp} < 0.4 \text{ km}^{-1} \quad Z_{h} > 25 \text{dBZ} \\ 50.7 \times K_{dp}^{0.85} & K_{dp} \geq 0.4 \text{ km}^{-1} \end{cases} \]

R(Z/Z-Zdr)

\[R = \begin{cases} 0.0365 \times 10^{(0.1 \times 0.625 \times Z_{h})} & Z_{dr} < 1.5 \text{dB} \\ 0.0067 \times 10^{0.1 \times 0.93 \times Z} 10^{0.1 \times (-3.43) \times Z_{dr}} & Z_{dr} \geq 1.5 \text{dB} \end{cases} \]
Features of 15 Points averaged radar variables

Radar elevation angle (degree)

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.8</td>
<td>35</td>
<td>22.2</td>
<td>22.6</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
</tbody>
</table>

Z is not sensitive to the elevation angle (height)

Zdr decreases with the height

Kdp is noisy and some negative values presents.
Estimated Rainfall
(15 points average)

1), R(Z) works best in this case. 2), Sharp peaks in the RR estimation by using R(x-Zdr) R(x,Kdp) are caused by the near zero or negative values of Zdr and Kdp. 3), Rain rate is overestimated, especially for the period 22:19~22:30.
Estimated Rainfall
(Mid Point B3)

Rain Rate

Rain Accumulations
Estimated Rainfall
(Upper Point B1)

Rain Rate

Rain Accumulations

(a) R(Z)
(b) R(Kdp)
(c) R(Z−Zdr)
(d) R(Kdp−Zdr)
(e) R(Z)/R(Z−Zdr)
(f) R(Z)/R(Kdp)
Estimated Rainfall
(Lower Point B5)

1. Matches the rain gauge observation better than both upper point, mid point result and 15 points average result, especially for the period 22:19~22:30
Horizontal advection

15 point averaged radial velocity

Radar

Gauge

Rain Gauge

wind
Conclusions

- Among various Rain rate estimators, $R(Z)$ works better than others.
- Not like other estimators, $R(Z)$ is not sensitive to elevation angle.
- Due to the low rain rate ($<50\text{mm/h}$), $R(x-Kdp)$ doesn’t work well.
- When there is uniformly distributed horizontal wind, the horizontal advection of rain must be considered in rain gauge comparison.
Thank You

- Questions?